Double eta polynomials and equivariant Giambelli formulas
نویسنده
چکیده
We use Young’s raising operators to introduce and study double eta polynomials, which are an even orthogonal analogue of Wilson’s double theta polynomials. Our double eta polynomials give Giambelli formulas which represent the equivariant Schubert classes in the torus-equivariant cohomology ring of even orthogonal Grassmannians, and specialize to the single eta polynomials of Buch, Kresch, and the author.
منابع مشابه
Equivariant Quantum Schubert Polynomials
We establish an equivariant quantum Giambelli formula for partial flag varieties. The answer is given in terms of a specialization of universal double Schubert polynomials. Along the way, we give new proofs of the presentation of the equivariant quantum cohomology ring, as well as Graham-positivity of the structure constants in equivariant quantum Schubert calculus.
متن کاملA Tableau Formula for Eta Polynomials
We use the Pieri and Giambelli formulas of [BKT1, BKT3] and the calculus of raising operators developed in [BKT2, T1] to prove a tableau formula for the eta polynomials of [BKT3] and the Stanley symmetric functions which correspond to Grassmannian elements of the Weyl group W̃n of type Dn. We define the skew elements of W̃n and exhibit a bijection between the set of reduced words for any skew w ∈...
متن کاملExcited Young Diagrams and Equivariant Schubert Calculus
We describe the torus-equivariant cohomology ring of isotropic Grassmannians by using a localization map to the torus fixed points. We present two types of formulas for equivariant Schubert classes of these homogeneous spaces. The first formula involves combinatorial objects which we call “excited Young diagrams” and the second one is written in terms of factorial Schur Qor P -functions. As an ...
متن کاملGiambelli Compatible Point Processes
We distinguish a class of random point processes which we call Giambelli compatible point processes. Our definition was partly inspired by determinantal identities for averages of products and ratios of characteristic polynomials for random matrices found earlier by Fyodorov and Strahov. It is closely related to the classical Giambelli formula for Schur symmetric functions. We show that orthogo...
متن کاملGiambelli, Pieri, and Tableau Formulas via Raising Operators
We give a direct proof of the equivalence between the Giambelli and Pieri type formulas for Hall-Littlewood functions using Young’s raising operators, parallel to joint work with Buch and Kresch for the Schubert classes on isotropic Grassmannians. We prove several closely related mirror identities enjoyed by the Giambelli polynomials, which lead to new recursions for Schubert classes. The raisi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 94 شماره
صفحات -
تاریخ انتشار 2016